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ABSTRACT

In this note we give a rational expression for the Poincaré series of I1,,,, the
trace ring of m generic 2 X 2 matrices. This result extends the computations of
E. Formanek for m <4. As a consequence, we prove that the Poincaré series
satisfies the functional equation

P, 1/t)y= — ' P(1L,.,,0) (m=>2)

supporting the conjecture that II,,, is a Gorenstein ring.

1. The rational expression

Throughout this note, k will be a field of characteristic zero. By R we will
denote the polynomial ring k[x;(I); 1 <i,j < n; 1<l <m]. The sub-k-algebra
of M.(R) generated by the elements {X, = (x;({)),;} is G., the ring of m
generic n X n matrices. By adjoining to it the traces of all its elements, we obtain
the trace ring Il,.. of m generic n X n matrices; see for example [1], [5]. If
deg(x;(1))=1 for all i,j and [ then Il,.. is a positively graded k-algebra

i—o (ILmx)i. Its Poincaré series is then the formal power series over Z:

Pl t)= 2 dimy (T0 )i). £

Similarly, if deg(X;(1))=(0,...,1,...,0)=e¢,, then II,, is a N“-graded k-
algebra. Its Poincaré series in this multigradation is then:

PUpntr,.rtm)= > iy ([en )i i) £ Lo
(i
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For n =2, a power series expansion for the Poincaré series was given by C.
Procesi [7] and in the multigradation by E. Formanek [2].

We will now give a rational expression for P (IL..;¢,...,t.) using some 60-
year-old results due to H. Weyl [10, p. 11 and p. 17] and I. Schur [8].

Let R..,. denote the center of I1,, .. In [6] Procesi has proved that the map

£ TH(f. Xnat)

defines a monomorphism from I1,, ., onto the subspace of R,..:, consisting of all
elements of degree one in X,.i, i.e. Zg, i y(Rms1n)G,.inn- Translating to
Poincaré series, this means that P(Il,..;t,...,%.) is the coefficient of .., in the
power series expansion of @(R,,,H witiy t,,.,th) or equivalently:

@(Hm,n;tl’--"tm) @(Rm+lny 1. ,tm,tm+1)ltm”=0'

atm-H

If n =2 one can give a fairly precise description of R..i,, [7]. Recall from [7]
that R, is the ring of invariant polynomial mapping from m +1 copies of
M, (k) under the componentwise action by conjugation of GL,(k). Now, M,(k)
decomposes in the direct sum k @ M° with M° the 3-dimensional vector space of
trace zero matrices. Therefore, R,..i, is the polynomial ring in the elements
Tr(X,),...,Tr(X,+1) over the ring of invariants of m +1 copies of M° under
induced action of 6L,(k), Ro.1..

M is endowed with the nondegenerate quadratic form Tr(A°?), thus GL,(k)
acts on M" inducing the full group SO(M°) of special orthogonal transformations
for the form Tr(A?). Therefore, R%..» is the ring of special orthogonal
invariants of m +1 copies of the standard representation.

The composition of the Poincaré series in the multigradation of this ring was
carried out by H. Weyl [10, p. 17] and L. Schur [8]. They found the following
rational expression:

0 [1 + t2m-l ..... tM*2+ tm+1;tm—1’ tﬂ
m ; t s sy tm = m+ m
P(Rmnast bs1) e (b — 1) 0 (- k)
where the numerator of this expression denotes the determinant of the following
(m + )X (m +1) matrix:

BT o - BPPPR SO
t1+t%'" - t2+t§’" RTINS v
£’ 2y t'"” - 2+ t’"+1 tm+1+ tmil
t1 tz t:+i
| ti" t;“ L tm+1
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Combining the facts we get:

a [1 + t2m 1 tm—2+ tm+1;tm—l, tm]
M T ( ) T (b — ) A=t | im0

(*) PLuzti,... tm)=

Calculating the numerator of the right hand side of (*) gives:

]l’j(l—l})-ﬂ(tk_ti)‘(—l)m.ﬂti.ilj"(l-titk)_M1
_{—iljl(l—t,«).ﬁ(tk-ti).(—-l) ﬁ 1"1 — 1)
+’]jl(1_tj).ilj(tk—ti).(é(_l)m—ltl...i;...tm).iz (1-tt)

ta-ofl6-o.com s [a-w. (1] -4)} -

i=1

where M, and M, are defined to be:

[ 14+ 142

M1=det :
A LRI o Lt |

i tm 0
7 tm 0

[ 1+t2m—1 1+t%"m—l B
g+ e

=(=D™det | 7" e m T L = (- 1) A,
t;"‘l t:_l

L t;" tﬁ |

—1+:2"‘1 PR R A |

M2= det H
Y S T ||
! 0
t tm 0 |
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Lt R A T

=(=1)""det |7 el T T | = (- D)™ AL
t;n-l e tm-l
t;" t:

Therefore, the numerator is equal to:

1—11(1 - t])l—l(tk - t,‘). ] (1 - t,'tk)[em.Al - (em + Cm—1 + elem).Azl
j= < i<

where e denotes the ith elementary symmetric function in m variables. This
finishes the proof of:

THEOREM 1. The Poincaré series of the trace ring of m generic 2 X2 matrices

has the following rational expression:

_ em.Al_(em+el'em+em—1)~A2
P bisosbn) = G o (T g) T e — ) T (L~ #) (™72

2. The functional equation
The main result of this section is:

THEOREM 2. The Poincaré series of the trace ring of m generic 2 X 2 matrices

satisfies the functional equation:

P, 1/t) = — " P([past)  (m>2).

ProOF. We note that:

e2m~1 A (l _1_)
m .81 tl,...,tm

ef..'"_l.Az<tl,...,71‘) = = Bolty,...,tn),

1

_Al(tl,...,tm),

1 1
ef,..(e,,. + e1em +e"‘"‘(t_""’t_)) =en+e.lmtemni,

1 m

and therefore we get:

QD(H l i)= _e'_"zm‘l'{emAl_(em+elem+£m__—ll-A2}
" ) et I (G — 1) IR — t) T % (66 — 1)}

= —eb (1" PMpas sy b )
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Finally, specializing t;,=t,= --- = t. = t, we get the desired result.
In [3] we have shown that there exists an iterated Ore-extension I',, and a
natural morphism

Tm :Fm —»Hmyz.

In analogy with the commutative case, we say that I1.., is a Gorenstein ring iff

Ext: (s, Tw)=0  for i O,M%Qﬂ,

Exth, (In2,T)=1l,,  forj= gm_~2§m_—3)

In [4] it is shown, that Gorensteinness of Il,., is equivalent to the following:

CoNJECTURE. Il is a Cohen—Macauley module.

This fact is very plausible, since I1,., is the fixed module of a free module over
a regular domain under a reductive group.

As in the commutative case [9], it would follow from the fact that II,. is
Gorenstein that its Poincaré series satisfies the functional equation

@(nmyz;%) = (= 1) 1 P (o b)

for some o EZ.
Because Kdim(Il,.,) =4m —3, Theorem 2 supports the above conjecture.

Added in proof (December 1984). The above conjecture has been verified by
the author. Details will appear elsewhere, [4].
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